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Abstract: In this article presents a new gain matrix of the rotor flux Luenberger 
observer obtained based on the rotating method of the eigenvalues. In order to determine the 
gain matrix of the Luenberger observer, the mathematical model of the induction motor with 
iron loss, is used. The Luenberger observer estimates the position and modulus of the rotor flux 
space vector. The validation of the new gain matrix is done by numerical simulation in Matlab-
Simulink. 

 
 

Key words: induction motors, numerical simulation, Luenberger observer. 
 
 
 

1. INTRODUCTION 
 

In present, direct rotor field-oriented control (RDFOC) of induction motors, 
require estimation of the position and modulus of the rotor flux space vector [1] – [3].  

The dynamic performances of vector control systems are closely linked of the 
quality of estimating the position and modulus of the rotor flux space vector [1] – [3]. 

In order to increase the quality of the estimation of the position of the rotor 
flux space vector, of the induction motor mathematical model with iron core losses is 
used [4], in the design of the gain matrix of the Luenberger observer. In this sense, the 
method of rotating the eigenvalues, proposed by R. Maceratini and G. Barba is used 
[5].  

The essential contribution of this article is related to the presentation of a new 
gain matrix of the rotor flux Luenberger observer.  In the final part of the article, the 
dynamic performances of the Luenberger observer, based on the new gain matrix, are 
evidenced by numerical simulation in Matlab-Simulink. 
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2. LUENBERGER OBSERVER 
 

For a better understanding of the method for determining the new gain matrix 
of the Luenberger observer, in the following are presentation two mathematical models 
of the induction motor. 

 the stator currents-rotor fluxes model (in which the iron losses are neglected) 
[1]: 
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 the stator currents-rotor fluxes-air-gap fluxes model (the parallel model in 
which iron losses are taken into account) [4], [6]: 
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The following notations were used in the mathematical models presented 
above: Rr, Rs –  rotor/stator resistances; Lr, Ls– rotor/stator inductances; Lm  – mutual 
inductance; Rf  – iron loss resistance;   Tr, Ts – rotor/stator time-constants;   – leakage 
factor; zp – number of pole pairs; r – mechanical angular speed; su  – stator voltage 

space vector; si  – stator current space vector; 
r

 – rotor flux space vector; 
m

 – space 

vector air-gap flux.     
Under these conditions, the relations that define the Luenberger observer are 

[6]: 
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where the estimated variables are denoted by “^”;  1 0C   and G is gain matrix 

Luenberger 
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To determine the elements of the matrix G, in the following we will define the 
following matrix 
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From the above relationship, we notice that   is a submatrix of the state 
matrix (first 2 rows and 2 columns), from the component of the mathematical model 
defined by the relation (2). 

Following the tests, it observed that the spectrum of eigenvalues of the matrix 
  is located to the left of the complex plane. The spectrum of the eigenvalues of the   
matrix is obtained from the following relation 
 

 2det 0m I                                                    (6) 
 

where 2I  is the second order unit matrix and 1 2m m mj      is the spectrum of 
eigenvalues of the matrix  . 

Under these conditions, the elements of the gain matrix (G) are determined 
from the following imposed relation 
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where: 1 2e e ej      is the spectrum of the Luenberger observer eigenvalues; 

1 2Lk k j k    is the proportionality coefficient; £  is the set of complex numbers. 
The relation of determining the spectrum of the Luenberger observer 

eigenvalues is 
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Taking into account the relation (7), following the calculations we obtain the 
elements of the matrix G. 
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If in the above relations, we impose 2 0k   and 1 1k  , we obtain the elements 
of the matrix G based on the method of H. Kubota (proportional eigenvalues method) 
[7]. The elements of the matrix G in this case are identical to those proposed by 
O.Stoicuta [6]. 

On the other hand, if  1 cosk k    and  2 sink k   , the matrix G e is 

obtained based on the method proposed by R. Maceratini and G. Barba (method of 
rotating the eigenvalues) [5]. 

In this case, the proportionality coefficient from relation (7) becomes [5]: 
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From the above relation, it is observed that the method proposed by R. 
Maceratini and G. Barba is identical with the method proposed by H. Kubota, with the 
difference that simultaneously with the amplification of the eigenvalues by means of 
the proportionality coefficient k, there is also a rotation of the eigenvalues with an    
angle.  

In the above relation, the   angle can be chosen either constant or depending 
on the mechanical angular speed. (V. Bostan proposed this idea [8]) 
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where 
maxminm rk   . 

If in relation (7), we choose A  , we obtain the elements of matrix proposed 
by G. R. Maceratini and G. Barba [5]. The matrix G in this case is defined by the 
following elements [5] 
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where 141 a  . 

On the other hand, if in the above relations we impose 2 0k   and 1 1k  , we 
obtain the elements of the matrix G, proposed by H. Kubota [7]. 
 

3. SIMULATION RESULTS 
 

The validation of the gain matrix Luenberger - proposed (defined by relations 
(9) - (12)), is done by numerical simulation of the Luenberger observer in Matlab-
Simulink. In this sense, a 1.5[kW] induction motor is used [6], [9]. The Luenberger 
observer is tested in open loop. In the numerical simulation, the induction motor starts 
based on the DOL (Direct On-Line) method, in load (  10LT N m  ). 

The simulation results are presented in the following figure. 
 

 
 

Fig.1 The time variation of the rotor flux space vector (a) and stator current space vector (b)  



OLIMPIU STOICUTA 
 

In the numerical simulation, formula (13) was used, in which: 1.2k  ; 30o  . 
Based on the results in Fig. 1 we can say that the Luenberger observer estimates the 
state vector of the induction motor very well (the errors being very small). Tests have 
shown that the errors increase as the   angle decreases. The optimal choice of the 
parameters k and   in formula (13), as well as the study of the stability of the 
Luenberger observer, will be the subject of another article. 
 

4. CONCLUSIONS 
 
 The article extends the field of research of the full-order state observers for the 
induction motors. The article presents a new gain matrix of the Luenberger observer. 

Numerical simulation tests have shown that the new gain matrix of the 
observer allows the state vector estimation with very good errors. The Luenberger 
observer presented in this article successfully can be used in the vector control systems 
of induction motors.   
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